
Sample size determination

Yegor Tkachenko – June 2023

Marketing researchers often need to figure out the right sample size, that is, how many
observations it is necessary to collect for a specific task, such as determining some quantity
of interest. Here are examples of possible sample size questions:

• What is the right number of individuals to poll to learn an accurate proportion of a
politician’s supporters in the population?

• How many ads of type A and B do we need to show online to accurately assess the
di�erences in their quality and select the best one?

Answering such questions accurately is critical. Get the sample size too low, and the
collected data will be insu�cient to answer to the posed question. Get the sample size too
large, and you will waste money on collection of unnecessary observations.

In this chapter, I review several approaches to figuring out the right sample size that
are broadly applicable across a variety of practical marketing situations. Python code
implementation is provided.

Review of key statistical concepts

Before we begin, let us recall several key statistical concepts here. For random variables
xi:

1. Population mean is µ = 1
N

qN
i=1 xi, where N is a size of the population. For example,

µ could indicate the average height of all people in a particular country of interest.

2. Sample mean is x̄ = 1
n

qn
i=1 xi, where n Æ N is a size of the sample from the popu-

lation. For example, x̄ could indicate the average height of random set of residents
in a country of interest.

3. Population standard deviation is ‡ =


var(xi) =
Ò

1
N

qN
i=1(xi ≠ µ)2, where µ is the

true (unknown) population mean. It captures how much random variables xi vary
or scatter around the population mean.
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4. Sample standard deviation is s =
Ò

1
(n≠1)

qn
i=1(xi ≠ x̄)2, as an approximation of the

population standard deviation ‡, using sample mean x̄ in place of µ. Division by n≠1
instead of n allows us to correct for an underestimation of variance due to re-use of
the sample observations to both estimate the sample mean x̄ and then to compute
the deviation from this sample mean – it is also known as Bessel’s correction.1

5. Standard deviation of the mean or standard error is SE =


var(x̄) = ‡/
Ô

n ¥
s/

Ô
n. Note: While standard deviation captures how individual random variables

vary around the true mean µ, standard error captures how the sample mean of n

random variables varies around the true mean µ. In other words, standard error
is just a standard deviation applied to sample means, treated as random variables,
instead of the individual xi. Derivation:

SE =
Ò

var(x̄) =
ı̂ıÙvar

A
1
n

nÿ

i=1
xi

B

=
ı̂ıÙ 1

n2 var

A
nÿ

i=1
xi

B

=
Ú

n

n2 var(xi) =

Û
‡2

n
= ‡Ô

n
,

based on the properties of the variance of a sum of independent random variables.

6. Central Limit theorem (CLT) is a foundational theorem in probability theory – it
roughly says that for a large sample size (n Ø 30), a sample mean of n random vari-
ables x̄n = 1

n

qn
i=1 xi is distributed approximately Normal with mean µ and standard

deviation ‡/
Ô

n, where µ is population mean, ‡ is population standard deviation, and
n is the size of the sample. In more compact notation, x̄n æd N(µ, ‡

2
/n).

Sampling error and the Central Limit theorem

Consider an upcoming presidential election. Two candidates – Alice (A) and Bob (B) – are
running, and we need to estimate the proportion of eligible voters for each candidate in a
particular region. So we pose the following question to a random sample of eligible voters
in the region:

Q.: Select the candidate are you planning to vote for: (a) Alice; (b) Bob.

As a toy example, let us first consider estimating the proportion of votes in a small company
of 100 people. The 100 people whose opinion we are interested in are called the population.
We will represent the population as a 10 by 10 grid, where each individual is represented
by a cell with their vote, coded 1 for Alice and 0 for Bob. Here, 53 individuals are pro-Alice
and 47 are pro-Bob (that is, 53%=53/100 of votes for Alice). Of course, we do not know
this before conducting research.

1https://math.oxford.emory.edu/site/math117/besselCorrection/

https://math.oxford.emory.edu/site/math117/besselCorrection/
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1 0 1 1 1 0 0 1 0 1
1 0 0 1 1 1 0 1 1 1
0 1 1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 1 0 1
1 1 1 1 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0
0 1 0 0 1 0 0 0 0 1
0 0 1 1 0 0 1 1 1 1
1 0 1 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 1

(1)

Assume we can only survey 5 people out of 100. The 5 people we survey constitute a sample
we draw from the population. How should we select the sample from the population?
The most straightforward and common approach is to select the sample randomly. The
highlighting below indicates one possible random sample of size n = 5.

1 0 1 1 1 0 0 1 0 1
1 0 0 1 1 1 0 1 1 1
0 1 1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 1 0 1
1 1 1 1 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0
0 1 0 0 1 0 0 0 0 1
0 0 1 1 0 0 1 1 1 1
1 0 1 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 1

(2)

What is the problem if we do not do random sampling? For example, if we survey only
women, or only people that leave work after 21:00, their opinions may be special, not
representative of the full population, so we would get the wrong idea about what everyone
thinks by asking just this subset of people. Random sampling breaks this dependency
between the criterion for selection of the sample and that thing we are measuring based on
the sample. Truly random selection of the sample ensures that we can expect the sample
to be representative, that is, to reflect the opinions of the overall population.2

2
In practice, even if the list of potential respondents is generated truly randomly, whether specific re-

spondents agree to be surveyed and whether they complete the questionnaire, depends on their motivation,

which, in turn, depends on their compensation for participation in the survey and on their personal charac-

teristics. Correlations between survey non-completes and personal characteristics can create biased results

even if the respondents are randomly selected. Proper compensation may mitigate such issues to a degree.

Depending on the specific situation, it may also be possible to account for such bias during the modeling

stage.



4 SAMPLE SIZE DETERMINATION

Now notice that if we compute the proportion of votes for Alice in the n = 5 sample
above, we get 2/5 = 40%, which is distinct from the population vote proportion of 53%.
We have encountered the sampling error. As we draw samples from the population, the
measurements we get will di�er from the population-level truth.

In practice, marketers deal with much larger populations than 100 people. Let us scale
up the example above, so that we sample instead from an abstract large country-level
population. In other words, we will assume the population is too large for us to survey
even 1% of it, to say nothing of surveying all of it like in a census.3

Let the true proportion of Alice supporters in the population be µ = 53%, as before.
(In practice, we do not know this number – but want to estimate it.) Let us simulate a set
of 50 binary Alice vs. Bob responses randomly drawn from the population and examine the
proportion of Alice votes in the resulting sample. We will simulate the votes using draws
from Bernoulli distribution, which will output 1 with probability 0.53, and 0 otherwise.

import numpy as np # provides random number and array support
np. random .seed(1234) # setting seed for replicable random numbers

# vote distribution - Alice is designated by 1, Bob - by 0;
# 50 votes sampled ; (n=1 means we perform 1 coin roll per person ,
# so we are sampling from Bernoulli distribution )

votes = np. random . binomial (n=1, p=0.53 , size=50)
x_avg = np.mean(votes) # sample proportion of votes for Alice
print(x_avg)

0.48

We find sample mean x̄ = 0.48, which is the proportion of Alice votes in the sample of
n = 50 individuals. We see here too that the sample proportion 0.48 is not identical to the
population proportion of µ = 0.53 – a demonstration of the sampling error. As we collect
new surveys with the same sample size, we will be observing ever changing proportions.
The hope, however, is that they will not be far from the population proportion.

3
There are special considerations when one is sampling from a small population (also called finite), so

a sample may constitute a large proportion of the population. This is because even though a sample may

be small, so it should yield a large sample error, if the population itself is small too, it may be almost

perfectly approximated by that small sample (for example, when the population is 5 people, the relatively

small sample, in absolute terms, of those 5 people will yield zero sampling error). For this reason, there

is a special technique to analyze sample size in the finite population settings, called the finite population

correction. However, it is rarely applicable in the majority of cases relevant to marketers due to large

population, so we do not cover it here. There are two specific reasons the correction can typically be safely

ignored. First, when the population is not extremely small, the e�ect of the finite population correction is

negligible. Second, the finite population correction technique can only reduce the sample size requirements

compared to the classical infinite population analysis. Thus, if one applies the classical analysis, one is

erring on the conservative side, selecting larger sample size, which can be considered prudent in practical

situations.
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Let us examine the distribution of vote proportions we get as we collect 1,000 surveys,
each survey based on 50 random respondents. We visualize the histogram of sample Alice
vote proportions below.

np. random .seed(1234)
votes = np. random . binomial (n=1, p=0.53 , size=(50 ,1000))
x_avg = np.mean(votes , axis=0)

import matplotlib . pyplot as plt
plt. rcParams [’text. usetex ’] = True
plt. rcParams . update ({’font.size ’: 12})
plt.rc(’text.latex ’, preamble =r’\ usepackage {amsmath , cmbright }’)

n, bins , patches = plt.hist(x_avg , bins=22 , facecolor =’blue ’, alpha =0.5)
plt.xlim(0,1)
plt.ylim(0,160)
plt. xlabel (r’$\ boldsymbol {\bar x}$ ( sample proportion of votes for Alice)’)
plt. ylabel (’Frequency ’)
plt. axvline (x=0.53 , color =’red ’)
plt.text(0.54 , 130 , r"$\ boldsymbol {\mu}=0.53$", rotation =0, color=’red ’)
plt. savefig (’./ figs/hist.pdf ’, dpi=300 , bbox_inches =’tight ’, pad_inches =0)
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The visualization carries grim news to those who would wish to rely on a sample of just
50 respondents when calling an election – numbers are all over the place, so the prediction
would likely be o�.

np.round(np.sum(x_avg<0.5)/x_avg. shape [0],3)

0.301
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In fact, 30% of simulated polls have sample means less than 0.5 majority cuto�, wrongly
awarding the victory to Bob rather than Alice. The average of the survey means (propor-
tions) is close to the true population proportion. However, the standard deviation of the
survey means (also called a standard error of the mean or SE) is quite high!

Let us now repeat the computation, but this time each survey will be collected from a
much larger sample of 1,000 individuals.

np. random .seed(1234)
votes = np. random . binomial (n=1, p=0.53 , size=(1000 ,1000))
x_avg = np.mean(votes , axis=0)

n, bins , patches = plt.hist(x_avg , bins=22 , facecolor =’blue ’, alpha =0.5)
plt.xlim(0,1)
plt.ylim(0,160)
plt. xlabel (r’$\ boldsymbol {\bar x}$ ( sample proportion of votes for Alice)’)
plt. ylabel (’Frequency ’)
plt. axvline (x=0.53 , color =’red ’)
plt.text(0.54 , 130 , r"$\ boldsymbol {\mu}=0.53$", rotation =0, color=’red ’)
plt. savefig (’./ figs/ hist_large_sample .pdf ’, dpi=300 , bbox_inches =’tight ’,

pad_inches =0)
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We can see now that survey responses are very concentrated around the right value.
Notice how much the standard deviation of the mean – the standard error – has dropped,
compared to the case where the sample was only 50 people.

np. round (np.sum(x_avg>0.5)/x_avg. shape [0],3)

0.97
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Now, 97% of surveys would correctly give victory to the winning candidate (i.e., judge
their vote share to be above 50%). Larger sample size seems to have helped – good news
for survey companies that get paid by the number of responses.

What these results show is that as the sample size grows, the means of the samples x̄

will be closer to the population mean µ. The spread of sample means around the population
mean grows narrower. Luckily for us, statisticians have figured out a precise way to quantify
how sample size relates to the spread of the sample means around the population means.
The key result in this area is known as the Central Limit theorem (CLT).

CLT is a critical foundational theorem in probability theory – it roughly says that for a
large sample size (n Ø 30), an average of n random variables x̄n = 1

n

qn
i=1 xi is distributed

approximately Normal with mean µ and standard deviation ‡/
Ô

n, where µ is population
mean, ‡ is population standard deviation across responses, and n is the size of the sample.
In more compact notation, x̄n æd N(µ, ‡

2
/n).

What the result says is that the standard error of the sample mean (standard deviation
across means) around the population mean decreases as a square root of the sample size.
We can take advantage of this relationship to decide what n is required for the purpose of
a given research project, as we will see below.

Sample size based on a confidence interval

One approach to set the sample size is to specify the size of the acceptable confidence
interval within which we can expect the sample mean x̄n to fall around the population mean
µ. For the Normal distribution, we can write down what the size of the confidence interval
should be so that a normally distributed random variable falls outside this confidence
interval with probability –. By the Central Limit theorem, we know that sample mean x̄n

should be Normally distributed for large enough n.
Then the confidence interval for the sample mean is x̄ œ (µ≠z1≠–/2‡/

Ô
n, µ+z1≠–/2‡/

Ô
n).

– is the chance that sample mean x̄n falls outside the confidence interval around the pop-
ulation mean µ. z1≠–/2 is called a z-score – it is a factor that depends on – and defines
the size of the of confidence interval in terms of the standard deviation of sample mean x̄n

(standard error): ‡/
Ô

n.
Alternatively, we can express the dependency between the confidence interval size and

the probability of a sample mean falling outside of such confidence interval using the the
following relationship:

P (d = |x̄n ≠ µ| Ø z1≠–/2‡/
Ô

n) = –

The equation reads as follows: With probability –, the distance between true mean µ and
the drawn sample mean x̄n exceeds z1≠–/2 standard deviations of the mean (standard errors,
‡/

Ô
n).4 For example, for – = 0.05, z1≠–/2 = 1.96 – that is, in 95% of experiments/studies

that we run, sample mean will fall within approximately two standard errors (‡/
Ô

n)
4Derivation: z-score is indexed by 1≠–/2 to indicate that for a standard normal random variable Zi ≥d
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around the population mean. In other words, x̄ œ (µ ≠ 1.96‡/
Ô

n, µ + 1.96‡/
Ô

n) in 95%
of random samples.

Note that the distribution is symmetric and the sample mean x̄ may fall outside the
confidence interval on the right and on the left of µ. Thus, the probability that x̄n exceeds µ

by z1≠–/2 = 1.96 standard deviations is –/2 = 0.025 – and it is the same as the probability
that x̄n is lower than µ by 1.96 standard deviations; combining these two possibilities, we
get – = 0.05. Another way to express this is to write that P (x̄n Æ µ ≠ 1.96‡/

Ô
n) =

P (x̄n Ø µ + 1.96‡/
Ô

n) = 0.025 and thus P (|x̄n ≠ µ| Ø 1.96‡/
Ô

n) = 0.05.
We can get z-scores corresponding to desired – by applying a quantile function (also

called inverse CDF) for Normal distribution to 1 ≠ –/2 quantity as follows:

# z- scores for different alpha
from scipy.stats import norm
alpha = np. array([0.1, 0.05 , 0.01])
z = np. round(norm.ppf(1 - alpha / 2), 2) # applying inverse CDF
print(z)

[1.64 1.96 2.58]

We can use the inequality

d = |x̄n ≠ µ| Ø z1≠–/2‡/
Ô

n

to directly set the sample size. After algebraic manipulation, we get the lower bound for
the sample size

n Ø
z

2
1≠–/2‡

2

d2

that ensures that in 100 · (1 ≠ –)% of experiments the sample mean will fall within the
confidence interval around the population mean with the specified margin of error d =
|x̄n ≠ µ|. Optimal sample size n

ú is then the smallest integer greater or equal to this
quantity: n

ú = ceil
3

z2
1≠–/2‡2

d2

4
. For 95% confidence interval, we get n

ú = ceil
1

1.962‡2

d2

2
.

Consider the case, where x̄n is a proportion between 0 and 1, as in the earlier examples
with the proportions of votes. Let us set the margin of error d = 0.01, or 1 percentage
point di�erence between sample and population means. Then n

ú = ceil
1

1.962‡2

0.012

2
.

The last challenge we face is that we do not a priori know the population standard
deviation ‡ across observations (binary preference statements by the respondents for Alice
vs. Bob). Luckily, it turns out that, for binary random variables, there is a closed form

N(0, 1), P (Zi Æ z1≠–/2) = 1 ≠ –/2. By symmetry, P (z1≠–/2 Æ Zi Æ z1≠–/2) = 1 ≠ –. Multiplying Zi by

‡/
Ô

n and adding µ, we get µ+Zi‡/
Ô

n ≥d N(µ, ‡2/n) and P (µ≠z1≠–/2‡/
Ô

n Æ x̄n Æ µ+z1≠–/2‡/
Ô

n) =

1≠–, where x̄n = µ+Zi‡/
Ô

n. Subtracting µ and taking absolute value, we get P (|x̄n≠µ| Æ z1≠–/2‡/
Ô

n) =

1 ≠ –. We can also write it as P (|x̄n ≠ µ| Ø z1≠–/2‡/
Ô

n) = –. Note that we can write Ø instead of >
because equality |x̄n ≠ µ| = z1≠–/2‡/

Ô
n is a zero-probability event.
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formula for the standard deviation based on the population proportion (see variance of
Bernoulli distribution5): ‡ =


µ(1 ≠ µ). For 0 Æ µ Æ 1, this quantity is maximized at µ =

0.5: 0.5 = arg maxµ


µ(1 ≠ µ), which can be obtained via di�erentiation. Then ‡max =Ô
0.5 · 0.5 = 0.5. We can then assume this largest possible standard deviation, which will,

conservatively, give us the necessary sample size under the worst possible conditions:

n
ú = ceil

A
1.9620.52

0.012

B

= 9, 604

(Alternatively, appropriate standard deviation could be gleaned from past studies.)
Thus, if we want to measure proportion to ±0.01 error in 95% of measurements under

the worst possible variance (when true proportion is close to 0.5), the sample size has to
be 9,604 – almost ten thousand responses. That is a large number! What if we are fine
with a wider margin of error of ±0.04? Then

n
ú = ceil

A
1.9620.52

0.042

B

= 601.

This sounds much more feasible, but such a survey would not be very useful if the true
proportion is within 0.5 ± 0.04 range.

You should now have a good idea of how such analysis goes. If you are dealing not
with proportion, but with continuous variables, you would only need to substitute in a
reasonable guess of ‡, possibly, based on prior research, as well as the desired margin of
error on the same scale. However, luckily, most critical questions in marketing surveys can
be cast as binary questions, and the sample size based on proportions is, in practice, a
good enough guide.

As a side note, the optimal sample size is closely bounded above as follows:

n
ú = ceil

A
1.9620.52

d2

B

Æ ceil
A

220.52

d2

B

= ceil
3 1

d2

4
,

which gives a great rule of thumb for a quick conservative sample size estimate.

Sample size based on Type 1 and 2 errors

We can use this type of z‡/
Ô

n confidence interval as a way to test hypotheses. For
example, H0: µ = 0.5 vs. H1: µ ”= 0.5. To reject µ = 0.5, we need our sample mean x̄

to lie outside the 95% confidence interval around the 0.5 value, which can be expressed as
the following familiar test: |x̄ ≠ 0.5| Ø z1≠–/2‡/

Ô
n, with z1≠–/2 = 1.96 for – = 0.05. If we

use this rule, there is only 5% chance that we are wrong when we reject H0 – that is, we
5https://en.wikipedia.org/wiki/Bernoulli_distribution

https://en.wikipedia.org/wiki/Bernoulli_distribution
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conclude µ ”= 0.5, whereas in reality µ = 0.5. In other words, the confidence interval size
controls the false positive rate, also known as the type 1 error.

However, this may not be enough of an assurance. We may further be interested in
limiting the false negative rate, also known as the type 2 error, of declaring µ = 0.5 when
µ ”= 0.5. This would happen, for example, if for some µ > 0.5, |x̄ ≠ µ| < z‡/

Ô
n. It is

customary to limit this probability to be less than — = 0.2.
It turns out that we can achieve this if we compute the sample size using an inflated

z-score z = z1≠–/2 + z1≠— = 1.96 + 0.84 = 2.8 and then perform hypothesis test as usual
using z1≠–/2 z-score. This hypothesis test is expected to have at least 100%-20% = 80%
power under the 95% confidence interval. That is, H0 will be rejected when H1 is actually
true in 80% of cases. See a chapter on sample size by Andrew Gelman for the explanation
and algebra behind this [GH06].

A common challenge marketers face is to evaluate a set of ads and to determine which
one is more e�ective. Here, the largest detectable e�ect conditional on the study size is
the quantity we worry about. The already presented analytical machinery can be readily
extended to these settings. In particular, A/B test can be cast in the hypothesis testing
settings with H0 : µA ≠ µB = 0 and H1 : µA ≠ µB ”= 0.

Here µA, µB are the group means (for example, click through rates – proportion of ad
displays resulting in clicks) and d denotes a di�erence between two means. Let nA, nB be
sample sizes for the two groups. N = nA +nB. We will assume equal sample sizes between
groups n = nA = nB for simplicity, so N = 2n (unequal sample size and variance formulas
are also available [GH06]). We will also assume equal variance within groups at ‡

2. We
reject the hypothesis of group equality when |µA ≠µB| Ø z1≠–/2‡


2/n (factor

Ô
2 arises to

account for pooled variance between two compared groups). Then, following our previous
discussion and using the inflated z-score, per-group sample size should be

n Ø
(z1≠–/2 + z1≠—)22‡

2

d2

Here z1≠–/2 = 1.96 is, as earlier, the z-score for 95% confidence interval – it ensures
that the probability of a false positive – detected di�erence when d = 0 – is under 5%.
z1≠— = 0.84 ensures that the probability of a false negative (no di�erence when d ”= 0) is
under 20%, that is, power 1 ≠ — is over 80%. Let us apply this formula for the optimal
sample size to detect a 0.001 di�erence in click-through rates (CTRs), under ‡

2 = 0.01·0.99
within-group variance, corresponding to CTRs of around 1%.

Then we get

n
ú = ceil

A
(1.96 + 0.84)2 · 2 · 0.01 · 0.99

0.0012

B

= 155, 232.

What we find is that a statistical A/B test requires over 310 thousand ad impressions
(displays) across two arms combined, which, in and of itself, is a substantial advertising
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campaign and may be unacceptable at early testing stages. In the next section, we will see
what alternative options we have when the sample sizes dictated by the hypothesis testing
framework are infeasible.

Let us run a simple simulation to check if we are indeed achieving the desired power.
We will simulate comparisons in CTRs between two ads with true CTR of 1.1% and 1.2%
(d = 0.001), with – = 0.05 and — = 0.2, as in the example above. We will compare CTRs
between two ads on samples of size n

ú as dictated by the formula above and record how
frequently we can correctly reject H0 of identical CTRs between the two ads.

def power_simulation ():
# true CTR for ads for simulation
pA = 0.011
pB = 0.012
# desired detectable difference between ads
d = 0.001
# z scores for desired confidence interval (1- alpha) and power (1-beta)
alpha = 0.05
beta = 0.2
z_alpha , z_beta = np.round(norm.ppf(

np.array([1 - alpha / 2, 1 - beta])), 2)
z = z_alpha + z_beta

# sample size using z = 2.8 score to ensure 80% power
n = int(np.ceil(2 * 0.01 * 0.99 * z ** 2 / d ** 2))

# array to store zero difference hypothesis rejection
reject = np.zeros(1000)

# what power do we observe empirically ?
for i in range(1000):

# sampling CTR for two ads
theta_A = np.mean(np. random . binomial (n=1, p=pA , size=n))
theta_B = np.mean(np. random . binomial (n=1, p=pB , size=n))
# simulated hypothesis test using z = 1.96 score
reject [i] = 1.0 * (np.abs( theta_A - theta_B ) > z_alpha * np.sqrt(0.01

* 0.99 * 2 / n))

power = np.mean( reject )
return power

np. random .seed(1234)
print ( power_simulation ())

0.79

We obtain power of ≥0.8 as required.
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Sample size based on a profit maximization principle

When selecting the sample size so far, we have used as our target metrics di�erent statis-
tical concepts such as confidence intervals and the probabilities of false positives and false
negatives (type 1 and 2 errors). We set acceptable cuto�s for probabilities of type 1 error
(–) and type 2 error (— or 1-power) to get a minimally acceptable sample size n.

However, there are some issues with this approach. First, as we have seen, such analysis
can result in infeasibly large sample sizes. Second, metrics like type 1 and 2 errors do not
directly translate into management priorities. In particular, the focus on type 1 error – the
error of concluding ads are di�erent when they are actually similarly e�ective – does not
make much sense profit-wise, as we would be fine picking the wrong ad when the profits
from the two are almost identical. Type 1 and 2 errors also do not take into account
exploration-exploitation trade-o� due to use of a potentially limited population for testing
suboptimal ads. Application of hypothesis testing also leads to an awkward philosophy.
Even if H0 cannot be rejected and two ads are considered statistically indistinguishable
based on adopted statistical standards, we would still want to pick the ad with higher
observed reward – but under hypothesis testing such thinking is considered faulty.

Luckily, there is an alternative formal decision-theoretic framework due to Feit and
Berman [FB19] based on profit maximization rather than classical statistical hypothesis
testing philosophy that we can adopt to address this problem. The setup is as follows:
Yj ≥ N(µj , s

2) is random “profit” from an ad j (for example, the ad’s click through rate).
Two group means follow an identical prior distribution: µA, µB ≥ N(µ, ‡

2). Parameters
µ, ‡, s are assumed known. Let N be the total population on which we can run the ad.
The decision framework considers two stages, where in the first stage we test ads A and
B on samples of size nA and nB. We then deploy the best ad on the remaining sample
N ≠ nA ≠ nB. Customers that get shown the ads are randomly assigned between these
groups. Notice that the expected profit during the first stage is just �[1] = µ(nA +
nB). It can be shown that the the profit during the second stage is �[2] = (N ≠ nA ≠

nB)

S

Uµ +
Ô

2‡2
Ô

fi

Ò
2‡2+s2 nA+nB

nAnB

T

V. Finally, we can obtain an analytical formula that gives the

optimal sample size that maximizes the total profit �[1] + �[2]:

nA = nB =
ı̂ıÙN

4

3
s

‡

42
+

A
3
4

3
s

‡

42B2
≠ 3

4

3
s

‡

42
.

Notice that nA = nB need not be an integer – we will err on the conservative side of the
larger sample size and set n

ú = ceil (nA).
Let us apply this formula to compare the sample sizes we can get vs. statistical hypoth-

esis testing. We will follow the setup from before, where the standard deviation around
the ad mean µj is s =

Ô
0.01 · 0.99 and we would like to detect a di�erence of d = 0.001
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between the ads. We now need to specify standard deviation of the prior distribution ‡.
We can set it so that it gives E[|µA ≠ µB|] = d = 0.001 to make the setup comparable to
hypothesis testing. After some manipulation, we get ‡ = 0.00089, which corresponds to
expected absolute di�erence of 0.1% between means.6 We will also set N = 1, 000, 000 as
the total potential audience for simplicity.

N = 1000000
s = np.sqrt(0.01*0.99)
sigma = 0.00089 # d=0.001
r = (s/sigma) ** 2
n = int(np.ceil(np.sqrt ((N/4)*r + (0.75*r) ** 2) - 0.75*r))
print (n)

47 ,305

As a result, we get n
ú = 47, 305, which is ≥ 3 times less than the 155, 232 required

sample size under the classical hypothesis testing framework. If this sample size is still
inappropriately large, we could reduce the available population N , which will result in a
smaller sample size still. This flexibility makes profit maximizing framework attractive in
practice and we expect to see its growing use in ad testing and other settings.

As a bonus, there is also an expression to compute the probability of the wrong ad
being chosen as a result:

E[Pr(Wrong choice)] = 1
4 ≠ 1

2fi
arctan

AÔ
2‡

s

Ú
nAnB

nA + nB

B

.

(Formula simplifies when nA = nB = n.)

p_wrong = np.round(0.25-(1 / (2 * np.pi)) * np. arctan (np.sqrt(n) * sigma /
s),3)

print ( p_wrong )

0.076

Applying the formula for the probability of the wrong choice, we get 7.6%, which is not
bad at all.

6µA, µB ≥ N(µ, ‡2
) æ µA ≠ µB ≥ N(0, 2‡2

) æ E[|µA ≠ µB |] = 2‡/
Ô

fi := 0.001 æ ‡ = 0.001
Ô

fi/2 ¥
0.00089.
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A/B test without a sample size: Online learning approach

In the ad testing example, the distinction between the ad testing and the ad deployment
stages is somewhat artificial and, in fact, harmful. For example, by fixing the ad after
the ad testing stage we are missing the opportunity to learn more and to adjust ad dis-
plays throughout the testing stage. It turns out, there is an even more profit-maximizing
way to perform an ad test, which does not require worrying about the sample size at all.
The approach is based on Thompson sampling, which belongs to a class of online learning
algorithms and is designed to solve the multi-armed bandit problem.7 The idea is to contin-
uously adjust the proportion in which the ads are shown – in proportion to their observed
rewards. Specifically, the heuristic but powerful principle behind Thompson sampling is to
show an ad with the probability that it is better than any other considered ad.

For binary outcomes (e.g., clicks), it is easy to keep track of the performance of the
ads using Beta(–, —) distribution, which is a flexible distribution of the random variable
in the (0, 1) range. In particular, for each ad, let ◊A and ◊B denote the corresponding
click-through rates. At the beginning, we assume ◊A, ◊B ≥ Beta(–, —), which is our prior
distribution of the CTR for both ads. Its expectation is E[◊] = –/(–+—). Let kA denote the
number of clicks observed on ad A during nA ad displays (also called impressions), which
is distributed Binomial. Then for ad A, an updated posterior distribution of the CTR is
also Beta(– + kA, — + (nA ≠ kA)), with the expectation E[◊post

A ] = (– + kA)/(– + — + nA).
The results are the same for ad B (substitute the index). (We are able to obtain such
a nice closed form expression as Beta distribution is a conjugate prior for the Binomial
distribution.8)

How do we decide which ad to show? We simply take draws from the distributions
for two tracked ads and show the ad that has the highest drawn value. That is, for
◊A ≥ Beta(– + kA, — + (nA ≠ kA)) and ◊B ≥ Beta(– + kB, — + (nB ≠ kB)), if ◊A > ◊B,
we show ad A; we show ad B otherwise (◊A = ◊B is a zero-probability event in case of
random draws). (This approach easily extends to multiple ads as well – we just show the
ad that has the highest drawn ◊ from across all ads.) Note that the event ◊A > ◊B, so
ad A gets shown, will occur with probability E[1{◊A > ◊B}] = P (◊A > ◊B), which is the
probability that ad A is better than ad B, as desired under Thompson sampling heuristic
(we are essentially performing a single step of a Monte Carlo simulation to decide which
ad to show). After showing the winning ad, say A, we record whether we observed a click,
updating kA and nA parameters appropriately.

Here is a simple example in code. Consider ads A and B with true CTR µA = 0.011
and µB = 0.012. How fast will Thompson sampling figure out the better ad?

7
A problem of maximizing rewards from pulling di�erent arms in a slot machine, one arm at a time,

where each arm is associated with an unknown expected reward.
8https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2014/

d6d722fef1c4f36cf2525bfe0b4f905a_MIT18_05S14_Reading14a.pdf

https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2014/d6d722fef1c4f36cf2525bfe0b4f905a_MIT18_05S14_Reading14a.pdf
https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2014/d6d722fef1c4f36cf2525bfe0b4f905a_MIT18_05S14_Reading14a.pdf
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def simulate (N):
# parameters of Beta prior for two ads
k_A = 0
n_A = 0
k_B = 0
n_B = 0
alpha = 1
beta = 1

# true CTR for ads - customer simulation
muA = 0.011
muB = 0.012

# simulation for N ad displays decided by Thompson sampling
for i in range(N):

# sampling CTR for two ads
# using updated posterior distributions
# to reflect current knowledge about the ads
theta_A = np. random .beta(alpha + k_A , beta + n_A - k_A , size=1)
theta_B = np. random .beta(alpha + k_B , beta + n_B - k_B , size=1)

# deciding which ad to show and updating running statistics
# for the displayed ad
if theta_A > theta_B :

click_A = np. random . binomial (n=1, p=muA , size=1)[0]
k_A += click_A
n_A += 1

else:
click_B = np. random . binomial (n=1, p=muB , size=1)[0]
k_B += click_B
n_B += 1

# expected CTR under posterior
theta_A_est = (alpha + k_A)/(alpha + beta + n_A)
theta_B_est = (alpha + k_B)/(alpha + beta + n_B)

return theta_A_est , theta_B_est , k_A , k_B , n_A , n_B

np. random .seed(1234)
theta_A_est , theta_B_est , k_A , k_B , n_A , n_B = simulate ( 1000000 )
theta_A_est = np. round( theta_A_est , 4) # Ad A estimated CTR
theta_B_est = np. round( theta_B_est , 4) # Ad B estimated CTR
prop_A = np.round(n_A / (n_A + n_B), 3) # Proportion of time ( suboptimal )

ad A shown
print ( theta_A_est , theta_B_est , prop_A )

0.011 0.012 0.075
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We can see that, when using Thompson sampling, the wrong ad gets shown during
7.5% of total 1 million ad displays. With the two-stage approach from previous section, we
deterministically show nA/N ¥ 4.7% of wrong ads during test phase and then have 7.6%
chance of having selected the wrong ad on top of that, which yields ≥11.6% proportion of
wrong ads displayed in expectation,9 so Thompson sampling “wastes” fewer ad displays on
the wrong ads according to this simulation.

Thompson sampling approach obviates the need for knowing a sample size a priori
(beforehand), as we can stop at any point (e.g., when ad budget runs out), while being
sure that we spent money in the best possible way. Empirically, this Thompson sampling
approach has been found to outperform profit-wise the two-stage approach from the prior
section [FB19]. Thompson sampling approach can also easily incorporate more than two
ads simultaneously, whereas closed-form solutions of this kind are not available in the
case of results from the previous section. It is also easy to do personalization, where the
expected ad performance can di�er across encountered individuals based on their personal
data, allowing for the more e�ective ad for a given individual to be shown with higher
likelihood. Finally, the sampling approach can handle continuous outcomes as easily – for
example, by using the normal distribution as a way to keep track of the ad performance.

The main drawback of the sampling approach is that it may be complex to implement
from the technological standpoint, as online tracking of ad performance and fast data
aggregation are necessary for its use.

Advanced: Brute force simulation approach to sample sizes

The discussed profit-maximizing framework does not yield closed-form analytical formulas
for A/B/C tests (tests with more than two compared ads). Either profit maximization or
hypothesis testing frameworks may fail to yield nice closed form solutions under di�erent
distributional assumptions. We may also want to extend the framework to non-trivial
statistical tests, for example, involving predictive models and bootstrap confidence interval
estimation.

If we nevertheless want to know a number for a sample size and do not want to use
Thompson sapling method, we can resort to brute-force simulation to evaluate, for example,
type 1 and 2 errors, profit, or any other measure of interest from di�erent sample sizes and
problem setups. While such simulations can be time-consuming, they are typically quite
simple to implement and are a�ordable on the modern computers.

The core idea behind the simulations is to imagine what a true scenario might look like
(e.g., how large is the di�erence between ad CTRs or between voter proportions for di�erent
political candidates) and to assess what errors/profit we would be getting depending on

9P (wrong ad shown) = P (test chose wrong ad)P (wrong ad shown | test chose wrong ad) +

P (test chose correct ad)P (wrong ad shown | test chose correct ad) = 0.076 ·(1≠0.047)+(1≠0.076) ·0.047 =

0.076 + 0.047 ≠ 2 · 0.076 · 0.047 = 0.116.
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the sample size if the reality were like we imagine it. If we are uncertain about what the
reality might be, it is better to be conservative, assuming the worst case scenario (e.g.,
little di�erence between CTRs or political candidates), or to evaluate multiple scenarios
and make a decision holistically.

In fact, we have already conducted a simple simulation at the beginning of this chapter
when we looked at the histogram spread under two sample sizes for a political survey.
Let us now extend that example to find the optimal sample size. Consider we suspect
two candidates are neck to neck and we suspect one of the front-runners has around 51%
of votes. We want to find out what should be the sample size to correctly judge the
front-runner as victorious (having > 50% share of votes).

from tqdm. notebook import tqdm # tracks progress

def simulate (N):
# front - runner ’s true proportion of votes
mu = 0.51

# array to store the probability of correctly selecting the winner
p_correct = np.zeros (N)

# simulation for sample sizes up to 10 ,000
for n in tqdm(range(N)):

# simulating collection of 1,000 surveys with sample size n
votes = np. random . binomial (n=1, p=mu , size=(n+1, 1000))

# proportion of votes for front - runner in each survey
x_avg = np.mean(votes , axis=0)

# proportion of surveys where the true front - runner
# is correctly identified as a winner
p_correct [n] = np.sum(x_avg >= 0.5) / x_avg.shape [0]

plt.plot(range(1,N+1), p_correct , color=’blue ’, alpha=0.5)
plt. xlabel (’Sample size n’)
plt. ylabel (’Pr( Correct frontrunner )’)
plt. axhline (y=0.95 , color =’red ’)
plt.text(500 , 0.965 , r"$p=0.95$", rotation =0, color=’red ’)
plt. savefig (’./ figs/ simulation .pdf ’, dpi=300 , bbox_inches =’tight ’,

pad_inches =0)
return None

np. random .seed(1234)
simulate (10000) # takes some time
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p = 0.95

Boom! Even with n = 1, 000 individuals taking a survey, only in 75% of situations do we
correctly call the front-runner, when the front-runner has 51% of votes in the population!
Only at n = 5, 000 are we solidly above 90% accuracy, and only at around n = 9, 000 are
we solidly above 95% mark. Remember this results when you see the next TV poll with
n < 1, 000 – especially where the race is even tighter than 51% for the front-runner. (We
could do better by pooling di�erent polls and thus getting a larger sample size, of course.)

Note that the setup in this voting simulation is somewhat di�erent than in the statistical
hypothesis testing from before. We only care here about the error of getting less than 50%
votes for the victor with de-facto 51% votes (which is, arguably, what really matters to us
as pollsters – we really care about calling the right victor, and probably care less about
wrongly predicting the victor’s support to be higher than it really is). In contrast, in the
statistical analysis from before we cared about minimizing the symmetric error of our guess
around 0.51 proportion. Also, we use the exact Bernoulli distribution in this simulation,
whereas the statistical confidence interval from before was based on the normal distribution
approximation to the distribution of the voting proportions, motivated by the Central Limit
theorem. So, while these simulation results may be directionally similar to the analytical
(formula-based) results from earlier, they are distinct. Arguably, they are also somewhat
easier to explain to an average person.

This is an example of how simulation can help us answer precise questions without
much hard math, but at the expense of extra computing time and resources. Importantly,
given increasing computing power, this drawback becomes less important. Even when
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an analytical formula is available, simulation can be a great sanity check to verify the
correctness of the analytical computation.

Following this example, we can use simulations to answer a variety of questions. For
instance, we could do power simulations, determining the necessary sample size to achieve
a specific power of the experiment. In particular, we could measure how likely one is to get
a significant coe�cient in a linear regression when the data is randomly generated from a
specific true model and the corresponding coe�cient is non-zero in this true model. This
is left to the reader as an exercise.

Advanced: Challenging cases and empirical scaling laws

There are types of problems where the right sample size can be hard to determine. Consider,
for example, the problem of training a complex predictive model – specifically, a neural
network – to predict personal information (such as demographics) from consumer facial
images. How many observations do we need to train the model?

In case of a simple regression, we could assume how the dependency between inputs
and outputs might look like, sample data from this model, run the simulation as in the
previous section, and choose sample size that allows for a satisfactory approximation of
the true model from the sampled data. However, it is not clear how to build a high-fidelity
hypothetical “true” model for such complex data as facial images, where dependencies are
highly non-linear, so we cannot straightforwardly apply this approach.

One feasible approach, if there is some existing data, is to estimate the model on existing
data subsets of di�erent sizes – tracking how the metric of interest, for example, holdout
accuracy of prediction, changes with the sample size used for training. This can give one
an idea of how the predictive power empirically scales with the sample size. One can then
use this empirical scaling law to select the sample size for the new data collection.

Unfortunately, this approach can be problematic. First, if one is collecting data of very
di�erent nature (di�erent types of predictions to be made form facial images, facial images
from individuals of di�erent demographic distribution, etc.), it is very hard to say how
relevant the historical data would be to determining the su�ciency of the sample size for
the problem at hand. Second, if the historical data only contained 1,000 observations, it
may shed little light on the possible predictive power of the model trained on 1 million
observations, even if the data were drawn from similar population, simply because the
larger scale of data can non-linearly increase the model quality [Kap+20] and it may be
hard to infer the predictive power achievable on a large sample from such a relatively small
sample.

In these cases, while historical data may be of some guidance, one really has to resort
to the old but good approach of “let’s try and see.” In other words, one may have to
sequentially accumulate data, continuously assessing the resulting model quality, stopping
once it achieves a satisfactory level, which is similar to the continuous experimentation
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philosophy of the Thompson sampling, reviewed earlier. While this conclusion may not
be the most satisfactory one, it is good to be transparent about the fact that there are
instances where the sample size cannot be reliably determined a priori but needs to be
figured out on the go.

Further reading

This chapter covers the most fundamental and critical sample size concepts for any market-
ing analyst, however, it is not all-encompassing. Sample size literature has been developed
in a variety of fields and can get rather specialized. The references at the end of this chapter
will be a good place to go for more information. Van Belle [VB11] provides guidance on
di�erent rules of thumb for sample size determination. A curious reader may also perform
an online search for keywords like finite population correction; minimum detectable e�ect;
Bayesian sample size determination; group sequential methods and the predictive proba-
bility of success from the clinical trial literature; and simulation for power analysis. There
are also many online software packages that yield sample size quantities for the desired
settings if one does not want to do the independent work.
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